Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
2.
Environ Health Perspect ; 132(4): 47004, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573328

RESUMO

BACKGROUND: Evidence suggests that prenatal air pollution exposure alters DNA methylation (DNAm), which could go on to affect long-term health. It remains unclear whether DNAm alterations present at birth persist through early life. Identifying persistent DNAm changes would provide greater insight into the molecular mechanisms contributing to the association of prenatal air pollution exposure with atopic diseases. OBJECTIVES: This study investigated DNAm differences associated with prenatal nitrogen dioxide (NO2) exposure (a surrogate measure of traffic-related air pollution) at birth and 1 y of age and examined their role in atopic disease. We focused on regions showing persistent DNAm differences from birth to 1 y of age and regions uniquely associated with postnatal NO2 exposure. METHODS: Microarrays measured DNAm at birth and at 1 y of age for an atopy-enriched subset of Canadian Health Infant Longitudinal Development (CHILD) study participants. Individual and regional DNAm differences associated with prenatal NO2 (n=128) were identified, and their persistence at age 1 y were investigated using linear mixed effects models (n=124). Postnatal-specific DNAm differences (n=125) were isolated, and their association with NO2 in the first year of life was examined. Causal mediation investigated whether DNAm differences mediated associations between NO2 and age 1 y atopy or wheeze. Analyses were repeated using biological sex-stratified data. RESULTS: At birth (n=128), 18 regions of DNAm were associated with NO2, with several annotated to HOX genes. Some of these regions were specifically identified in males (n=73), but not females (n=55). The effect of prenatal NO2 across CpGs within altered regions persisted at 1 y of age. No significant mediation effects were identified. Sex-stratified analyses identified postnatal-specific DNAm alterations. DISCUSSION: Regional cord blood DNAm differences associated with prenatal NO2 persisted through at least the first year of life in CHILD participants. Some differences may represent sex-specific alterations, but replication in larger cohorts is needed. The early postnatal period remained a sensitive window to DNAm perturbations. https://doi.org/10.1289/EHP13034.


Assuntos
Poluição do Ar , Metilação de DNA , Recém-Nascido , Lactente , Masculino , Feminino , Gravidez , Humanos , Estudos Prospectivos , Canadá/epidemiologia , Sangue Fetal
3.
Proc Natl Acad Sci U S A ; 121(16): e2317290121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588424

RESUMO

A central prediction of evolutionary theory is that energy invested into reproduction comes at the expense of somatic maintenance and repair, accelerating biological aging. Supporting this prediction are findings that high fertility among women predicts shorter lifespan and poorer health later in life. However, biological aging is thought to begin before age-related health declines, limiting the applicability of morbidity and mortality for studying the aging process earlier in life. Here, we examine the relationship between reproductive history and biological aging in a sample of young (20 to 22yo) men and women from the Cebu Longitudinal Health and Nutrition Survey, located in the Philippines (n = 1,735). We quantify biological aging using six measures, collectively known as epigenetic clocks, reflecting various facets of cellular aging, health, and mortality risk. In a subset of women, we test whether longitudinal changes in gravidity between young and early-middle adulthood (25 to 31yo) are associated with changes in epigenetic aging during that time. Cross-sectionally, gravidity was associated with all six measures of accelerated epigenetic aging in women (n = 825). Furthermore, longitudinal increases in gravidity were linked to accelerated epigenetic aging in two epigenetic clocks (n = 331). In contrast, the number of pregnancies a man reported fathering was not associated with epigenetic aging among same-aged cohort men (n = 910). These effects were robust to socioecological, environmental, and immunological factors, consistent with the hypothesis that pregnancy accelerates biological aging and that these effects can be detected in young women in a high-fertility context.


Assuntos
Envelhecimento , Reprodução , Gravidez , Masculino , Humanos , Feminino , Adulto , Filipinas , Envelhecimento/genética , Reprodução/genética , Senescência Celular , Epigênese Genética , Metilação de DNA
4.
Geroscience ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466455

RESUMO

In humans, DNA methylation (DNAm) based estimators of telomere length (TL) have been shown to better predict TL-associated variables (e.g., age, sex, and mortality) than TL itself. The biological significance of DNAm-based estimators of TL (DNAmTL) is unclear. In vitro DNAmTL shortens with cell replications, even when telomerase is maintaining TL. Telomerase is typically suppressed in humans, except in testes. Accordingly, sperm TL increases with age, and offspring with greater paternal age at conception (PAC) have longer TL. Thus, we expect that PAC associations with DNAmTL can shed light on whether in vivo cell replications in the presence of high telomerase activity (production of sperm) shorten DNAmTL or if PAC-lengthened TL causes lengthened DNAmTL. In a pre-registered analysis, using data from 1733 blood samples from the Philippines, we examined the association between paternal age at conception (PAC) and offspring DNAmTL. We did not find an association between PAC and DNAmTL but found a positive association of paternal grandfather's age at father's conception predicting grandchild's DNAmTL. In post hoc analyses, we examined how DNAmTL versus qPCR-measured TL (qPCR-TL) correlated with measures typically associated with TL. Contrary to previous findings, on almost all measures of external validity (correlations with parental TLs, southern blot TL, and age), qPCR-TL outperformed DNAmTL. The "kilobase" units of DNAm-based estimators of TL showed considerable deviations from southern blot-derived kilobase measures. Our findings suggest that DNAmTL is not a reliable index of inherited aspects of TL and underscores uncertainty about the biological meaning of DNAmTL.

5.
Aging Cell ; : e14149, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504468

RESUMO

Caloric restriction (CR) modifies lifespan and aging biology in animal models. The Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy (CALERIE™) 2 trial tested translation of these findings to humans. CALERIE™ randomized healthy, nonobese men and premenopausal women (age 21-50y; BMI 22.0-27.9 kg/m2 ), to 25% CR or ad-libitum (AL) control (2:1) for 2 years. Prior analyses of CALERIE™ participants' blood chemistries, immunology, and epigenetic data suggest the 2-year CR intervention slowed biological aging. Here, we extend these analyses to test effects of CR on telomere length (TL) attrition. TL was quantified in blood samples collected at baseline, 12-, and 24-months by quantitative PCR (absolute TL; aTL) and a published DNA-methylation algorithm (DNAmTL). Intent-to-treat analysis found no significant differences in TL attrition across the first year, although there were trends toward increased attrition in the CR group for both aTL and DNAmTL measurements. When accounting for adherence heterogeneity with an Effect-of-Treatment-on-the-Treated analysis, greater CR dose was associated with increased DNAmTL attrition during the baseline to 12-month weight-loss period. By contrast, both CR group status and increased CR were associated with reduced aTL attrition over the month 12 to month 24 weight maintenance period. No differences were observed when considering TL change across the study duration from baseline to 24-months, leaving it unclear whether CR-related effects reflect long-term detriments to telomere fidelity, a hormesis-like adaptation to decreased energy availability, or measurement error and insufficient statistical power. Unraveling these trends will be a focus of future CALERIE™ analyses and trials.

6.
Epigenomes ; 8(1)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38390895

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer that can affect immune system development and susceptibility to infection. Aging processes (measured as epigenetic age acceleration (EAA)) may mediate the immune-related effects of prenatal exposure to DEHP. This study's objective was to examine associations between prenatal DEHP exposure, EAA at three months of age, and the number of upper respiratory infections (URIs) from 12 to 18 months of age using a sample of 69 maternal-child pairs from a Canadian pregnancy cohort. Blood DNA methylation data were generated using the Infinium HumanMethylation450 BeadChip; EAA was estimated using Horvath's pan-tissue clock. Robust regressions examined overall and sex-specific associations. Higher prenatal DEHP exposure (B = 6.52, 95% CI = 1.22, 11.81) and increased EAA (B = 2.98, 95% CI = 1.64, 4.32) independently predicted more URIs. In sex-specific analyses, some similar effects were noted for boys, and EAA mediated the association between prenatal DEHP exposure and URIs. In girls, higher prenatal DEHP exposure was associated with decreased EAA, and no mediation was noted. Higher prenatal DEHP exposure may be associated with increased susceptibility to early childhood URIs, particularly in boys, and aging biomarkers such as EAA may be a biological mechanism. Larger cohort studies examining the potential developmental immunotoxicity of phthalates are needed.

7.
Alzheimers Dement ; 20(4): 2538-2551, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38345197

RESUMO

INTRODUCTION: Growing evidence indicates that fine particulate matter (PM2.5) is a risk factor for Alzheimer's disease (AD), but the underlying mechanisms have been insufficiently investigated. We hypothesized differential DNA methylation (DNAm) in brain tissue as a potential mediator of this association. METHODS: We assessed genome-wide DNAm (Illumina EPIC BeadChips) in prefrontal cortex tissue and three AD-related neuropathological markers (Braak stage, CERAD, ABC score) for 159 donors, and estimated donors' residential traffic-related PM2.5 exposure 1, 3, and 5 years prior to death. We used a combination of the Meet-in-the-Middle approach, high-dimensional mediation analysis, and causal mediation analysis to identify potential mediating CpGs. RESULTS: PM2.5 was significantly associated with differential DNAm at cg25433380 and cg10495669. Twenty-four CpG sites were identified as mediators of the association between PM2.5 exposure and neuropathology markers, several located in genes related to neuroinflammation. DISCUSSION: Our findings suggest differential DNAm related to neuroinflammation mediates the association between traffic-related PM2.5 and AD. HIGHLIGHTS: First study to evaluate the potential mediation effect of DNA methylation for the association between PM2.5 exposure and neuropathological changes of Alzheimer's disease. Study was based on brain tissues rarely investigated in previous air pollution research. Cg10495669, assigned to RBCK1 gene playing a role in inflammation, was associated consistently with 1-year, 3-year, and 5-year traffic-related PM2.5 exposures prior to death. Meet-in-the-middle approach and high-dimensional mediation analysis were used simultaneously to increase the potential of identifying the differentially methylated CpGs. Differential DNAm related to neuroinflammation was found to mediate the association between traffic-related PM2.5 and Alzheimer's disease.


Assuntos
Doença de Alzheimer , Metilação de DNA , Humanos , Doença de Alzheimer/genética , Doenças Neuroinflamatórias , Material Particulado/efeitos adversos , Encéfalo
8.
Brain Behav Immun ; 115: 101-108, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820972

RESUMO

BACKGROUND: Socioeconomic status (SES) gradients in health are well-documented, and while biological pathways are incompletely understood, chronic inflammation and accelerated immune aging (immunosenescence) among lower SES individuals have been implicated. However, previous findings have come from samples in higher income countries, and it is unclear how generalizable they are to lower- and middle-income countries (LMIC) with different infectious exposures and where adiposity-an important contributor to chronic inflammation-might show different SES patterning. To address this gap, we explored associations between SES and inflammation and immunosenescence in a sample of women in Cebu, Philippines. METHODS: Data came from the mothers of the Cebu Longitudinal Health and Nutrition Survey birth cohort (mean age: 47.7, range: 35-69 years). SES was measured as a combination of annual household income, education level, and assets. Chronic inflammation was measured using C-reactive protein (CRP) in plasma samples from 1,834 women. Immunosenescence was measured by the abundance of exhausted CD8T (CD8 + CD28-CD45RA-) and naïve CD8T and CD4T cells, estimated from DNA methylation in whole blood in a random subsample of 1,028. Possible mediators included waist circumference and a collection of proxy measures of pathogen exposure. RESULTS: SES was negatively associated with the measures of immunosenescence, with slight evidence for mediation by a proxy measure for pathogen exposure from the household's drinking water source. In contrast, SES was positively associated with CRP, which was explained by the positive association with waist circumference. CONCLUSIONS: Similar to higher income populations, in Cebu there is an SES-gradient in pathogen exposures and immunosenescence. However, lifestyle changes occurring more rapidly among higher SES individuals is contributing to a positive association between SES and adiposity and inflammation. Our results suggest more studies are needed to clarify the relationship between SES and inflammation and immunosenescence across LMIC.


Assuntos
Imunossenescência , Classe Social , Pessoa de Meia-Idade , Humanos , Feminino , Filipinas/epidemiologia , Inflamação , Fatores Socioeconômicos , Proteína C-Reativa/análise , Obesidade
9.
Skelet Muscle ; 13(1): 17, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898813

RESUMO

BACKGROUND: While ageing is associated with increased insulin resistance (IR), the molecular mechanisms underlying increased IR in the muscle, the primary organ for glucose clearance, have yet to be elucidated in older individuals. As epigenetic processes are suggested to contribute to the development of ageing-associated diseases, we investigated whether differential DNA methylation was associated with IR in human primary muscle stem cells (myoblasts) from community-dwelling older individuals. METHODS: We measured DNA methylation (Infinium HumanMethylationEPIC BeadChip) in myoblast cultures from vastus lateralis biopsies (119 males/females, mean age 78.24 years) from the Hertfordshire Sarcopenia Study extension (HSSe) and examined differentially methylated cytosine phosphate guanine (CpG) sites (dmCpG), regions (DMRs) and gene pathways associated with HOMA2-IR, an index for the assessment of insulin resistance, and levels of glycated hemoglobin HbA1c. RESULTS: Thirty-eight dmCpGs (false discovery rate (FDR) < 0.05) were associated with HOMA2-IR, with dmCpGs enriched in genes linked with JNK, AMPK and insulin signaling. The methylation signal associated with HOMA2-IR was attenuated after the addition of either BMI (6 dmCpGs), appendicular lean mass index (ALMi) (7 dmCpGs), grip strength (15 dmCpGs) or gait speed (23 dmCpGs) as covariates in the model. There were 8 DMRs (Stouffer < 0.05) associated with HOMA2-IR, including DMRs within T-box transcription factor (TBX1) and nuclear receptor subfamily-2 group F member-2 (NR2F2); the DMRs within TBX1 and NR2F2 remained associated with HOMA2-IR after adjustment for BMI, ALMi, grip strength or gait speed. Forty-nine dmCpGs and 21 DMRs were associated with HbA1c, with cg13451048, located within exoribonuclease family member 3 (ERI3) associated with both HOMA2-IR and HbA1c. HOMA2-IR and HbA1c were not associated with accelerated epigenetic ageing. CONCLUSIONS: These findings suggest that insulin resistance is associated with differential DNA methylation in human primary myoblasts with both muscle mass and body composition making a significant contribution to the methylation changes associated with IR.


Assuntos
Resistência à Insulina , Humanos , Feminino , Masculino , Idoso , Resistência à Insulina/fisiologia , Metilação de DNA , Insulina/metabolismo , Hemoglobinas Glicadas , Transdução de Sinais , Mioblastos/metabolismo
10.
J Allergy Clin Immunol Glob ; 2(4): 100130, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37781669

RESUMO

Background: In the first year of life, DNA methylation (DNAm) patterns are established and are particularly susceptible to exposure-induced changes. Some of these changes may leave lasting effects by persistently altering gene expression or cell type composition or function, contributing to disease. Objectives: In this discovery study, we investigated DNAm associations with sensitization to peanut, egg, or cow's milk and hypothesized that genes demonstrating DNAm differences in immune cells may play a role in the development of food sensitization. Methods: Infant sensitization (a skin prick test wheal size that is at least 2 mm greater than the negative control) was measured to peanut, egg, and cow's milk at age 1 year, and ages of food introduction were reported prospectively. PBMC DNAm was measured in blood samples at 1 year in 144 infants, oversampled for atopy or wheeze. Statistical analysis of Illumina 450k array DNAm data was conducted in R with adjustment for clinical and genetic covariables and a minimum effect size of 1%, false discovery rate of 5%, and medium-confidence false discovery rate threshold of 20%. Results: There were no DNAm differences between infants with and without peanut, egg, or cow's milk sensitization. Borderline significant sites with high effect sizes were enriched for methylation quantitative trait loci, hinting at genetic factors influencing DNAm at these sites. DNAm patterns did not differ by peanut or egg introduction before or after 12 months. Conclusion: This small pilot study did not show differences in methylation by food sensitization or introduction, but it did demonstrate DNAm patterns linked to genetic variants.

12.
Neurobiol Dis ; 186: 106274, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37648037

RESUMO

Elevated alpha-synuclein (SNCA) gene expression is associated with transcriptional deregulation and increased risk of Parkinson's disease, which may be partially ameliorated by environmental enrichment. At the molecular level, there is emerging evidence that excess alpha-synuclein protein (aSyn) impacts the epigenome through direct and/or indirect mechanisms. However, the extents to which the effects of both aSyn and the environment converge at the epigenome and whether epigenetic alterations underpin the preventive effects of environmental factors on transcription remain to be elucidated. Here, we profiled five DNA and histone modifications in the hippocampus of wild-type and transgenic mice overexpressing human SNCA. Mice of each genotype were housed under either standard conditions or in an enriched environment (EE) for 12 months. SNCA overexpression induced hippocampal CpG hydroxymethylation and histone H3K27 acetylation changes that associated with genotype more than environment. Excess aSyn was also associated with genotype- and environment-dependent changes in non-CpG (CpH) DNA methylation and H3K4 methylation. These H3K4 methylation changes included loci where the EE ameliorated the impacts of the transgene as well as loci resistant to the effects of environmental enrichment in transgenic mice. In addition, select H3K4 monomethylation alterations were associated with changes in mRNA expression. Our results suggested an environment-dependent impact of excess aSyn on some functionally relevant parts of the epigenome, and will ultimately enhance our understanding of the molecular etiology of Parkinson's disease and other synucleinopathies.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Humanos , Camundongos , alfa-Sinucleína/genética , Epigenoma , Expressão Gênica , Hipocampo , Camundongos Transgênicos , Doença de Parkinson/genética
13.
medRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425713

RESUMO

INTRODUCTION: Growing evidence indicates fine particulate matter (PM2.5) as risk factor for Alzheimer's' disease (AD), but the underlying mechanisms have been insufficiently investigated. We hypothesized differential DNA methylation (DNAm) in brain tissue as potential mediator of this association. METHODS: We assessed genome-wide DNAm (Illumina EPIC BeadChips) in prefrontal cortex tissue and three AD-related neuropathological markers (Braak stage, CERAD, ABC score) for 159 donors, and estimated donors' residential traffic-related PM2.5 exposure 1, 3 and 5 years prior to death. We used a combination of the Meet-in-the-Middle approach, high-dimensional mediation analysis, and causal mediation analysis to identify potential mediating CpGs. RESULTS: PM2.5 was significantly associated with differential DNAm at cg25433380 and cg10495669. Twenty-six CpG sites were identified as mediators of the association between PM2.5 exposure and neuropathology markers, several located in genes related to neuroinflammation. DISCUSSION: Our findings suggest differential DNAm related to neuroinflammation mediates the association between traffic-related PM2.5 and AD.

14.
Am J Hum Biol ; 35(11): e23948, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37338007

RESUMO

OBJECTIVES: The drivers of human life expectancy gains over the past 200 years are not well-established, with a potential role for historical reductions in infectious disease. We investigate whether infectious exposures in infancy predict biological aging using DNA methylation-based markers that forecast patterns of morbidity and mortality later in life. METHODS: N = 1450 participants from the Cebu Longitudinal Health and Nutrition Survey-a prospective birth cohort initiated in 1983-provided complete data for the analyses. Mean chronological age was 20.9 years when venous whole blood samples were drawn for DNA extraction and methylation analysis, with subsequent calculation of three epigenetic age markers: Horvath, GrimAge, and DunedinPACE. Unadjusted and adjusted least squares regression models were evaluated to test the hypothesis that infectious exposures in infancy are associated with epigenetic age. RESULTS: Birth in the dry season, a proxy measure for increased infectious exposure in the first year of life, as well as the number of symptomatic infections in the first year of infancy, predicted lower epigenetic age. Infectious exposures were associated with the distribution of white blood cells in adulthood, which were also associated with measures of epigenetic age. CONCLUSIONS: We document negative associations between measures of infectious exposure in infancy and DNA methylation-based measures of aging. Additional research, across a wider range of epidemiological settings, is needed to clarify the role of infectious disease in shaping immunophenotypes and trajectories of biological aging and human life expectancy.


Assuntos
Envelhecimento , Doenças Transmissíveis , Humanos , Lactente , Adulto Jovem , Adulto , Estudos Prospectivos , Filipinas/epidemiologia , Envelhecimento/genética , Metilação de DNA , Marcadores Genéticos , Epigênese Genética
15.
Discov Soc Sci Health ; 3(1): 9, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122633

RESUMO

Human social epigenomics research is critical to elucidate the intersection of social and genetic influences underlying racial and ethnic differences in health and development. However, this field faces major challenges in both methodology and interpretation with regard to disentangling confounded social and biological aspects of race and ethnicity. To address these challenges, we discuss how these constructs have been approached in the past and how to move forward in studying DNA methylation (DNAm), one of the best-characterized epigenetic marks in humans, in a responsible and appropriately nuanced manner. We highlight self-reported racial and ethnic identity as the primary measure in this field, and discuss its implications in DNAm research. Racial and ethnic identity reflects the biological embedding of an individual's sociocultural experience and environmental exposures in combination with the underlying genetic architecture of the human population (i.e., genetic ancestry). Our integrative framework demonstrates how to examine DNAm in the context of race and ethnicity, while considering both intrinsic factors-including genetic ancestry-and extrinsic factors-including structural and sociocultural environment and developmental niches-when focusing on early-life experience. We reviewed DNAm research in relation to health disparities given its relevance to race and ethnicity as social constructs. Here, we provide recommendations for the study of DNAm addressing racial and ethnic differences, such as explicitly acknowledging the self-reported nature of racial and ethnic identity, empirically examining the effects of genetic variants and accounting for genetic ancestry, and investigating race-related and culturally regulated environmental exposures and experiences. Supplementary Information: The online version contains supplementary material available at 10.1007/s44155-023-00039-z.

16.
Respir Res ; 24(1): 124, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143066

RESUMO

BACKGROUND: People living with HIV (PLWH) are at increased risk of developing Chronic Obstructive Pulmonary Disease (COPD) independent of cigarette smoking. We hypothesized that dysbiosis in PLWH is associated with epigenetic and transcriptomic disruptions in the airway epithelium. METHODS: Airway epithelial brushings were collected from 18 COPD + HIV + , 16 COPD - HIV + , 22 COPD + HIV - and 20 COPD - HIV - subjects. The microbiome, methylome, and transcriptome were profiled using 16S sequencing, Illumina Infinium Methylation EPIC chip, and RNA sequencing, respectively. Multi 'omic integration was performed using Data Integration Analysis for Biomarker discovery using Latent cOmponents. A correlation > 0.7 was used to identify key interactions between the 'omes. RESULTS: The COPD + HIV -, COPD -HIV + , and COPD + HIV + groups had reduced Shannon Diversity (p = 0.004, p = 0.023, and p = 5.5e-06, respectively) compared to individuals with neither COPD nor HIV, with the COPD + HIV + group demonstrating the most reduced diversity. Microbial communities were significantly different between the four groups (p = 0.001). Multi 'omic integration identified correlations between Bacteroidetes Prevotella, genes FUZ, FASTKD3, and ACVR1B, and epigenetic features CpG-FUZ and CpG-PHLDB3. CONCLUSION: PLWH with COPD manifest decreased diversity and altered microbial communities in their airway epithelial microbiome. The reduction in Prevotella in this group was linked with epigenetic and transcriptomic disruptions in host genes including FUZ, FASTKD3, and ACVR1B.


Assuntos
Infecções por HIV , Doença Pulmonar Obstrutiva Crônica , Humanos , Disbiose/genética , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Perfilação da Expressão Gênica , Epitélio , Infecções por HIV/epidemiologia , Infecções por HIV/genética
17.
Aging Dis ; 14(6): 2249-2266, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37199581

RESUMO

Huntington disease (HD) is an adult-onset neurodegenerative disorder that is caused by a trinucleotide CAG repeat expansion in the HTT gene that codes for the protein huntingtin (HTT in humans or Htt in mice). HTT is a multi-functional, ubiquitously expressed protein that is essential for embryonic survival, normal neurodevelopment, and adult brain function. The ability of wild-type HTT to protect neurons against various forms of death raises the possibility that loss of normal HTT function may worsen disease progression in HD. Huntingtin-lowering therapeutics are being evaluated in clinical trials for HD, but concerns have been raised that decreasing wild-type HTT levels may have adverse effects. Here we show that Htt levels modulate the occurrence of an idiopathic seizure disorder that spontaneously occurs in approximately 28% of FVB/N mice, which we have called FVB/N Seizure Disorder with SUDEP (FSDS). These abnormal FVB/N mice demonstrate the cardinal features of mouse models of epilepsy including spontaneous seizures, astrocytosis, neuronal hypertrophy, upregulation of brain-derived neurotrophic factor (BDNF), and sudden seizure-related death. Interestingly, mice heterozygous for the targeted inactivation of Htt (Htt+/- mice) exhibit an increased frequency of this disorder (71% FSDS phenotype), while over-expression of either full length wild-type HTT in YAC18 mice or full length mutant HTT in YAC128 mice completely prevents it (0% FSDS phenotype). Examination of the mechanism underlying huntingtin's ability to modulate the frequency of this seizure disorder indicated that over-expression of full length HTT can promote neuronal survival following seizures. Overall, our results demonstrate a protective role for huntingtin in this form of epilepsy and provide a plausible explanation for the observation of seizures in the juvenile form of HD, Lopes-Maciel-Rodan syndrome, and Wolf-Hirschhorn syndrome. Adverse effects caused by decreasing huntingtin levels have ramifications for huntingtin-lowering therapies that are being developed to treat HD.

18.
Epigenetics ; 18(1): 2187172, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36908043

RESUMO

Recent efforts have focused on developing methylation risk scores (MRS), a weighted sum of the individual's DNA methylation (DNAm) values of pre-selected CpG sites. Most of the current MRS approaches that utilize Epigenome-wide association studies (EWAS) summary statistics only include genome-wide significant CpG sites and do not consider co-methylation. New methods that relax the p-value threshold to include more CpG sites and account for the inter-correlation of DNAm might improve the predictive performance of MRS. We paired informed co-methylation pruning with P-value thresholding to generate pruning and thresholding (P+T) MRS and evaluated its performance among multi-ancestry populations. Through simulation studies and real data analyses, we demonstrated that pruning provides an improvement over simple thresholding methods for prediction of phenotypes. We demonstrated that European-derived summary statistics can be used to develop P+T MRS among other populations such as African populations. However, the prediction accuracy of P+T MRS may differ across multi-ancestry population due to environmental/cultural/social differences.


Assuntos
Metilação de DNA , Epigenoma , Ilhas de CpG , Fatores de Risco , Fenótipo , Estudo de Associação Genômica Ampla
19.
Proc Natl Acad Sci U S A ; 120(14): e2219086120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972454

RESUMO

Regulatory T cell (Treg) therapy is a promising approach to improve outcomes in transplantation and autoimmunity. In conventional T cell therapy, chronic stimulation can result in poor in vivo function, a phenomenon termed exhaustion. Whether or not Tregs are also susceptible to exhaustion, and if so, if this would limit their therapeutic effect, was unknown. To "benchmark" exhaustion in human Tregs, we used a method known to induce exhaustion in conventional T cells: expression of a tonic-signaling chimeric antigen receptor (TS-CAR). We found that TS-CAR-expressing Tregs rapidly acquired a phenotype that resembled exhaustion and had major changes in their transcriptome, metabolism, and epigenome. Similar to conventional T cells, TS-CAR Tregs upregulated expression of inhibitory receptors and transcription factors such as PD-1, TIM3, TOX and BLIMP1, and displayed a global increase in chromatin accessibility-enriched AP-1 family transcription factor binding sites. However, they also displayed Treg-specific changes such as high expression of 4-1BB, LAP, and GARP. DNA methylation analysis and comparison to a CD8+ T cell-based multipotency index showed that Tregs naturally exist in a relatively differentiated state, with further TS-CAR-induced changes. Functionally, TS-CAR Tregs remained stable and suppressive in vitro but were nonfunctional in vivo, as tested in a model of xenogeneic graft-versus-host disease. These data are the first comprehensive investigation of exhaustion in Tregs and reveal key similarities and differences with exhausted conventional T cells. The finding that human Tregs are susceptible to chronic stimulation-driven dysfunction has important implications for the design of CAR Treg adoptive immunotherapy strategies.


Assuntos
Doença Enxerto-Hospedeiro , Receptores de Antígenos Quiméricos , Humanos , Linfócitos T Reguladores , Exaustão das Células T , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
20.
Geroscience ; 45(3): 1817-1835, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36964402

RESUMO

Claims surrounding exceptional longevity are sometimes disputed or dismissed for lack of credible evidence. Here, we present three DNA methylation-based age estimators (epigenetic clocks) for verifying age claims of centenarians. The three centenarian clocks were developed based on n = 7039 blood and saliva samples from individuals older than 40, including n = 184 samples from centenarians, 122 samples from semi-supercentenarians (aged 105 +), and 25 samples from supercentenarians (aged 110 +). The oldest individual was 115 years old. Our most accurate centenarian clock resulted from applying a neural network model to a training set composed of individuals older than 40. An epigenome-wide association study of age in different age groups revealed that age effects in young individuals (age < 40) are correlated (r = 0.55) with age effects in old individuals (age > 90). We present a chromatin state analysis of age effects in centenarians. The centenarian clocks are expected to be useful for validating claims surrounding exceptional old age.


Assuntos
Centenários , Longevidade , Idoso de 80 Anos ou mais , Humanos , Longevidade/genética , Metilação de DNA , Epigênese Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...